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1. Introduction

Nieves and Pal [1] have considered the decay of a Z boson to a photon and a standard

four-dimensional graviton. In the ADD scenario [2],1 the graviton may be viewed from a

four-dimensional perspective as gaining a “tower” of massive Kaluza-Klein (KK) excita-

tions [6, 7] (this tower takes a relatively simple form if we assume that the extra dimensions

are toroidally compactified with the copies of S1 having a common radius R/2π, with R

the common circumference). Although the decays of a Z boson involving real production

of a KK graviton excitation with a photon will be suppressed by a gravitational coupling,

the existence of a “tower” of particles to which the Z boson can decay may counteract this

suppression. Because the KK excitations only couple with gravitational strength to Stan-

dard Model particles, they will almost certainly pass through a detector (their detection is

a next-to-leading-order process in the gravitational coupling). The ADD scenario therefore

predicts that we should see an increase in the decay width of the Z boson to a photon and

missing energy relative to the Standard Model prediction [8 – 11].

In this paper, we calculate, to leading order, each of the decay widths of the Z boson to

a photon and a KK graviton excitation. There are two relevant towers of KK excitations:

a spin-2 tower and a spin-0 tower. We combine the calculated widths to obtain an overall

decay width for the decay of a Z boson to a photon and some KK graviton excitation.

This calculated width will allow the determination of bounds on the size of large extra

dimensions when combined with experimental data on Z decay [12]. (The current upper

limit on the branching ratio for Z → γ+X, with X some beyond-Standard Model invisible

particle or particles, is O(10−6) [13]. With a “Giga-Z” collider setup, this could potentially

be reduced to around O(10−9).) The amplitudes calculated are also relevant to processes in

other extra dimensional models where the Standard Model fields are confined to a 4-brane

(e.g. the Randall-Sundrum 1 (RS1) model [14]).

Current experimental limits on the size of ADD extra dimensions from processes other

than Z boson decay come from inverse square law experiments [15, 16], from consideration

of the channel e+ +e− → γ+graviton at the LEP experiments [17], and from consideration

of the channel p+p̄ → jet+graviton at the Tevatron experiments [18, 19]. In the near future,

the most likely improvement in these experimental bounds should come with the publication

of results from the DØ experiment using Run II of the Tevatron, and combination of those

results with the already published CDF Run II bounds [18]. Further into the future, we

can expect investigation of large extra dimensions at the Large Hadron Collider.

For the decays considered in this paper, the leading order process is a one-loop process,

because the tree-level vertex for Z boson decay into a photon and a graviton is absent. This

means that there is a higher order prefactor in coupling constants of the decay width when

this decay mode is compared to other, tree-level, graviton production modes considered

previously [6, 7, 20]. However, there is a large amount of experimental data for Z boson

decay, which makes reasonable a comparison of bounds set by this novel production process

with bounds set by other processes.

1The idea of large extra dimensions was also considered [3 – 5] prior to the work of Arkani-Hamed,

Dimopoulos and Dvali.
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The tree-level vertex is absent because it is derived by considering a perturbative

expansion of the metric about flat space, so that the Z-γ-graviton term comes from a per-

turbation of the Z-γ Lagrangian term, which is zero. (In essence, each vertex involving a

KK graviton excitation is derived by “hanging” a graviton off a propagator or an existing

vertex [21, 22].) Because we are working with bare parameters, we are in effect working

with a basis for the electroweak sector in which there is Z-γ mixing at one-loop level, but

this will only enter the Lagrangian via counterterm corrections. It is clear that the ampli-

tude calculated will not contain terms associated with Z-γ-graviton tree-level mixing, since

we could calculate the amplitude using renormalized parameters instead of counterterms,

whereby we should have explicitly no Z-γ-graviton mixing.

At leading order, the decay is either into a spin-2 KK excitation or into a spin-0 KK

excitation (the spin-1 KK excitation does not couple directly to matter [7]). The spin-

2 case is almost identical to the case of Z boson decay to photon plus graviton without

extra dimensions, which has been considered by Nieves and Pal [1]. We repeat in this

paper some of the detail, for sake of completeness. The methodology of the spin-0 case is

strongly motivated by that of the spin-2 case.

In many tree-level decays involving particles with small masses, the contribution to

the decay width of channels involving a spin-0 KK graviton can be ignored, as the ver-

tices involving the spin-0 KK graviton contain the masses of the other particles (and in

some cases also contain momentum terms that are zero on-shell). However, the possibility

of massive particles in the loop means that there is a non-negligible contribution to the

amplitude in the one-loop calculation from the spin-0 decay channel.

For the decays into a spin-2 KK graviton and for the decays into a spin-0 KK graviton,

three types of diagram must be considered. The first two types of diagram are those with

a fermion in the loop and those with a W boson in the loop. (In principle, the second type

of diagram also includes diagrams with Goldstone bosons and Fadeev-Popov ghosts in the

loop, but we adopt the unitary gauge throughout.) A third type of diagram is required

if we are to work using bare parameters, namely the diagrams containing a counterterm.

It will turn out that the counterterm diagrams evaluate to zero, which is why we work

with bare parameters (and not renormalized parameters). The result that these diagrams

evaluate to zero supports the conclusion in [1] that such diagrams need not be considered

in the near-flat Standard Model scenario, and supports what appears to be a “miraculous

cancellation” of divergent terms in the spin-0 KK graviton calculation in this paper.

We also make use of the argument of [1] that, in the spin-2 KK graviton case, con-

servation of the electromagnetic current and of the energy-momentum tensor implies a

particular general form taken by the amplitude, which simplifies the calculation. We de-

rive an analogous argument for the spin-0 KK graviton case.

It is possible to estimate the form that the decay width will take prior to a full calcu-

lation. For the decay of a Z boson into a photon and a graviton in 3+1-dimensional space,

Nieves and Pal [1] give the estimate

Γ ∼ α2GM3
Z (1.1)

by dimensional analysis. They derive this estimate by noting that the graviton coupling
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introduces into the amplitude a factor of κ =
√

8πG, where G is Newton’s constant in four

dimensions; they also note that both the Z coupling and the photon coupling introduce into

the amplitude a factor of
√

α, where α is the fine-structure constant. (The estimate is then

obtained by noting that the Z mass, MZ , is the only dimensionful parameter remaining in

the calculation.)

For the calculation in the ADD scenario, the factor α2G remains in the width (and

G is still Newton’s constant in four dimensions). However, we sum over the Kaluza-Klein

excitations of the graviton by using an integral approximation over a “density” ρ [7], and

this density contains a factor Rn, where R/2π is the radius of the extra dimensions and

n is the number of extra dimensions. The Z mass remains the only other dimensionful

parameter (since we have summed over all KK graviton masses). We therefore obtain the

estimate

Γ ∼ α2GRnM3+n
Z . (1.2)

The detailed phenomenology of our more precisely calculated results is covered in

reference [12].

The model of toroidal compactification of the extra dimensions with a common com-

pactification radius R/2π is something of a toy model, not least because it does not suggest

a mechanism for confining the Standard Model fields to a 4-brane, as is required for the

ADD scenario. However, the model still deserves phenomenological investigation, firstly be-

cause the calculations involved may be useful for understanding models where the topology

of the compactified dimensions is more complicated, and secondly because the toy model

still gives some indication of the likely consistency of the ADD scenario with experimental

observations.

This paper is organised as follows. In Sections 2, 3 and 4, we state the Feynman

rules required and give the diagrams corresponding to a fermion loop, a W boson loop

and a counterterm, respectively. In Section 5 we present arguments giving the general

form of the amplitude in each of the spin-2 KK graviton production and the spin-0 KK

graviton production cases. Consideration of the spin-2 case, identically to that derived by

Nieves and Pal [1], shows that the amplitude can be expressed in terms of one CP-even

and two CP-odd coefficients. Consideration of the spin-0 case shows that the amplitude

can be expressed in terms of one CP-even and one CP-odd coefficient. We then proceed

in Section 6 to calculate the coefficients required for an expression of the amplitudes. In

Section 7, we use the expressions for the amplitudes to calculate decay widths for the

individual KK excitation modes, and then sum over these modes (approximating the sum

by an integral [7]) to obtain an overall decay width.

1.1 General notation

We take Greek indices to range over the four dimensions corresponding to the Standard

Model brane, and Roman indices to range over the n extra (bulk) dimensions.

We work with a metric tensor linearised so that

gλρ = ηλρ + 2κ(hλρ + ηλρφ) (1.3)
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(note that this is a hybrid of the notation of [1, 22], which do not have the extra dimen-

sional dilaton term, and of [7], which differs by a factor of two). With this definition, the

gravitational coupling κ satisfies

κ =
√

8πG , (1.4)

where G is Newton’s constant. The fields generated by the KK reduction may be expanded

in Fourier modes and redefined in terms of massive fields h̃~n
λρ, Ã~n

µi and φ̃~n
ij (for the spin-

2, spin-1 and spin-0 cases respectively) [7]. (The spin-1 field does not couple directly to

matter and is therefore neglected from now on as a higher order contribution.) ~n is a vector

giving the excitation level in each of the extra dimensions.

We note that at each mass level (i.e. for each distinct value of the excitation vector ~n),

there are one spin-2 KK graviton excitation h̃~n
λρ and n− 1 spin-0 KK graviton excitations

φ̃~n
ij to be considered. The n−1 factor comes from noting that the Standard Model particles

couple only to the trace φ̃~n of the spin-0 particles, and that one degree of freedom is lost

owing to the linear dependence of the modes φ̃~n
ij . Equivalently, we may note that vertices

involving the spin-0 particles always contain a δij term, and each external spin-0 particle

is accompanied by an extra-dimensional “polarisation tensor” eij , which satisfies the spin

sum identity [7]
n(n−1)/2

∑

s=1

es
ije

s∗
i′j′ =

1

2
P ~n

ii′P
~n
jj′ +

1

2
P ~n

ij′P
~n
ji′ , (1.5)

with

P ~n
ij = δij −

ninj

~n2
, (1.6)

which satisfies

P ~n
ijP

~n
jk = P ~n

ik, P ~n
ii = n − 1 , (1.7)

so that when we calculate the modulus-squared of the amplitude, the terms carrying extra

dimensional indices look like

δijδi′j′

(

1

2
P ~n

ii′P
~n
jj′ +

1

2
P ~n

ij′P
~n
ji′

)

, (1.8)

and, using equation (1.7), this evaluates to n − 1, as expected.

We define the polarisation tensors Eλρ(q), εν(k) and εµ
Z(p) as corresponding to the

spin-2 KK graviton excitation, the photon and the Z boson, respectively. The tensors

satisfy

εν(k)kν = 0 , (1.9)

εµ
Z(p)pµ = 0 , (1.10)

and

Eλρ(q)qλ = 0 , Eλρ(q)qρ = 0 . (1.11)

The gravitational polarisation tensor is symmetric and traceless:

Eλρ(q) = Eρλ(q) , Eλρ(q)ηλρ = 0 . (1.12)
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The momenta satisfy the on-shell conditions

p2 = M2
Z , (1.13)

k2 = 0 , (1.14)

q2 = m2
~n , (1.15)

where m~n is the mass of the KK graviton excited to level ~n, given for the toroidally

compactified ADD scenario by [7]

m2
~n =

4π2~n2

R2
. (1.16)

Four-momentum conservation (p = k + q) yields the on-shell identity

2k · q = M2
Z − m2

~n . (1.17)

We introduce notation for the off-shell amplitudes F
(h)
λρµν(q, k) (in the case of decay to

a spin-2 KK excitation) and F
(φ)
µν (q, k) (in the case of decay to a spin-0 KK excitation),

defined by

M(h)(q, k) = Eλρ∗(q)εν∗(k)εµ
Z(p)F

(h)
λρµν(q, k) (1.18)

and

M(φ)(q, k) = εν∗(k)εµ
Z(p)F (φ)

µν (q, k) , (1.19)

respectively.

2. Fermion loop diagrams

Figure 1 contains the diagrams for the Z → γ + h̃~n process with a fermion in the loop,

and figure 2 contains the diagrams for the Z → γ + φ̃~n process with a fermion in the loop.

The Feynman rules for the vertices occurring in the diagrams are given for reference in

figure 3. Their derivation is given in [6, 7]. Some of the tensor contributions to the vertex

factors are abbreviated for legibility; the abbreviations used are

Cλρνσ ≡ ηλνηρσ + ηλσηρν − ηλρηνσ , (2.1)

cλρβν(k1, k2) ≡ (k1 · k2)Cλρβν + ηλρk1νk2β−
− [ηλνk1ρk2β + ηλβk1νk2ρ − ηβνk1λk2ρ + (λ ↔ ρ)] , (2.2)

cZ
λρβν(k1, k2) ≡ cλρβν − M2

ZCλρβν , (2.3)

Vλρ(k1, k2) ≡
1

4
[γλ(k1 + k2)ρ + γρ(k1 + k2)λ − 2ηλρ(/k1 + /k2 − 2mf )] . (2.4)

We use Qf to denote the fermion charge, and have written

γ̃µ ≡ γµ(Xf + Yfγ5) ; (2.5)
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Z

f

f

h̃~n

f

γ

(a) (b)

(c) (d)

(e) (f)

Figure 1: 1-loop diagrams for the process Z → γ + h̃~n involving fermions in the loop. The spin-2

KK graviton excitations are represented by the double wavy lines.

Xf and Yf are scalars. We have also defined (as in [7])

ω ≡
√

2

3(n + 2)
. (2.6)

Writing F
(hf)
λρµν and F

(φf)
µν to denote the contributions from the fermion loop diagrams to

the off-shell amplitudes F
(h)
λρµν and F

(φ)
µν , respectively, and absorbing constants by defining

F
(hf)
λρµν ≡ κeQfg

2 cos θW
T

(hf)
λρµν (2.7)

and

F (φf)
µν ≡ κeQfg

2 cos θW
T (φf)

µν , (2.8)

we may write the contributions to the amplitudes from individual diagrams as

T
(hf :a)
λρµν = −

∫

d4l

(2π)4
Tr [γ̃µS(l − k)γνS(l)Vλρ(l, l + q)S(l + q)] , (2.9)
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Z

f

f

φ̃~n

f

γ

(a) (b)

(c) (d)

(e) (f)

Figure 2: 1-loop diagrams for the process Z → γ + φ̃~n involving fermions in the loop. The spin-0

KK graviton excitations are represented by double straight lines.

T
(hf :b)
λρµν = −

∫

d4l

(2π)4
Tr [γ̃µS(l − q)Vλρ(l, l − q)S(l)γνS(l + k)] , (2.10)

T
(hf :c)
λρµν = −iaλρνσΠ σ

µ (p) , (2.11)

T
(hf :d)
λρµν = −iaλρµσΠσ

ν(k) , (2.12)

T
(hf :e)
λρµν = Dαβ(p)cλρβν(p, k)Πµα(p) , (2.13)

T
(hf :f)
λρµν = Dαβ

Z (k)cZ
λρµα(p, k)Πβν(k) , (2.14)

(2.15)

and

T (φf :a)
µν = 2ω

∫

d4l

(2π)4
Tr

[

γ̃µS(l − k)γνS(l)

(

3

2
/l +

3

4
/q − 2mf

)

S(l + q)

]

, (2.16)

T (φf :b)
µν = 2ω

∫

d4l

(2π)4
Tr

[

γ̃µS(l − q)

(

3

2
/l − 3

4
/q − 2mf

)

S(l)γνS(l + k)

]

, (2.17)
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Zµ

−igγ̃µ

2 cos θW

Aν

−ieQfγν

k1

k2 h̃~n
λρ

−iκVλρ(k1, k2)

h̃~n
λρ

Aν

ieQf
κ
2 (Cλρνσ − ηλρηνσ)γσ

h̃~n
λρ

Zµ

i g
2 cos θW

κ
2 γ̃σ(Cλρµσ − ηλρηµσ)

k1

k2 h̃~n
λρ

Aν

Aβ

iκcλρβν(k1, k2)

k1

k2 h̃~n
λρ

Zα

Zµ

iκcZ
λρµα(k1, k2)

k1

k2 φ̃~n

2iωκ
(

3
4
/k1 + 3

4
/k2 − 2mf

)

φ̃~n

Aν

−3iωeQfκγν

φ̃~n

Zµ

−3iω g
2 cos θW

κγ̃µ

φ̃~n

Aν

Aβ

0

φ̃~n

Zα

Zµ

2iωκηµαM2
Z

Figure 3: Feynman rules for vertices in fermion loop diagrams. The extra-dimensional indices are

omitted from the vertices involving φ̃~n
ij (each vertex gains a coefficient of δij). Symbols and tensors

are defined in the main text. Arrows on bosonic lines indicate directions of flow of momenta.

T (φf :c)
µν = −3iωΠµν(p) , (2.18)

T (φf :d)
µν = −3iωΠµν(k) , (2.19)

T (φf :e)
µν = 0 , (2.20)

T (φf :f)
µν = 2ωηµαM2

ZDαβ
Z (k)Πβν(k) , (2.21)

(2.22)
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where we have written

aλρµν ≡ ηλρηµν − 1

2
ηλµηρν − 1

2
ηλνηρµ (2.23)

(2.24)

and

Πµν(k) ≡
∫

d4l

(2π)4
Tr [γ̃µS(l)γνS(l + k)] , (2.25)

and have defined the propagators

S(l) ≡ i(/l + mf )

l2 − m2
f

, (2.26)

Dαβ(p) ≡ −iηαβ

p2
, (2.27)

Dαβ
Z (k) ≡ i

k2 − M2
Z

(

−ηαβ +
kαkβ

M2
Z

)

(2.28)

for the fermion, photon and Z boson respectively (note that these are different from the

definitions used in [1]). This amounts to a choice of unitary gauge for the electroweak

sector. (We shall later need the propagator for the W boson, which we take to be that for

the Z boson with MZ → MW .)

3. W loop diagrams

Figure 4 contains the diagrams for the Z → γ+ h̃~n process with a W boson in the loop, and

figure 5 contains the diagrams for the Z → γ+ φ̃~n process with a W boson in the loop. The

Feynman rules for the vertices occurring in these diagrams additional to the fermionic loop

case are given for reference in figure 6. Their derivation is given in reference [7]. Again, we

have abbreviated for legibility some of the tensor contributions to the vertex factors; the

additional abbreviations used are

Nαβγ(k1, k2, k3) ≡ ηβγ(k3 − k2)α + ηγα(k1 − k3)β + ηαβ(k2 − k1)γ , (3.1)

cW
λρβν(k1, k2) ≡ cλρβν − M2

W Cλρβν , (3.2)

dλραβν(k1, k2, k3) ≡ Cλραβ(k1 − k2)ν + Cλραν(k3 − k1)β + Cλρβν(k2 − k3)α+

+ [ηλαηβν(k2 − k3)ρ + ηλβηαν(k3 − k1)ρ+

+ ηλνηαβ(k1 − k2)ρ + (λ ↔ ρ)] , (3.3)

Rαβµν ≡ 2ηαβηµν − ηαµηβν − ηανηβµ , (3.4)

Rλραβµν ≡ ηλρRαβνµ − ηλαRρβνµ − ηλβRρανµ − ηλνRρµαβ − ηλµRρναβ . (3.5)

Writing F
(hW )
λρµν and F

(φW )
µν to denote the contributions from the W boson loop diagrams to

the off-shell amplitudes F
(h)
λρµν and F

(φ)
µν , respectively, and this time absorbing constants by

defining

F
(hW )
λρµν ≡ κeg cos θW T

(hW )
λρµν (3.6)
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Z
W−

W−

γ

W− h̃~n

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4: 1-loop diagrams for the process Z → γ + h̃~n involving W bosons in the loop. We note

that once one has defined a convention for charge and momentum flow in the loop, diagrams (a)

and (b) must be treated as distinct.

and

F (φW )
µν ≡ κeg cos θW T (φW )

µν , (3.7)

– 11 –



J
H
E
P
1
1
(
2
0
0
7
)
0
8
9

Z
W−

W−

γ

W− φ̃~n

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5: 1-loop diagrams for the process Z → γ + φ̃~n involving W bosons in the loop.

we may write the contributions to the amplitudes from individual diagrams as

T
(hW :a)
λρµν = −

∫

d4l

(2π)4
Nαβµ(l,−l − p, p)Dατ

W (l)cW
λρστ (l + q, l)×

× Dσδ
W (l + q)Nγδν(l + p,−l − q,−k)Dγβ

W (l + p) , (3.8)
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k3k2
k1

Zλ

W+
β

W−
α

−ig cos θW Nαβλ(k1, k2, k3)

k3k2
k1

Aλ

W+
β

W−
α

−ieNαβλ(k1, k2, k3)
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α
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β
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α
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β
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Figure 6: Extra Feynman rules for vertices in diagrams with W boson loops. Additional vertex

functions are defined in the main text.

T
(hW :b)
λρµν = −

∫

d4l

(2π)4
Nαβµ(l − k,−l − q, p)Dατ

W (l − k)×

× Nστν(l,−l + k,−k)Dδσ
W (l)cW

λργδ(l + q, l)Dβγ
W (l + q) , (3.9)

T
(hW :c)
λρµν = i

∫

d4l

(2π)4
Nαβµ(l,−l − p, p)Dατ

W (l)dλρστν(l + p,−l,−k)Dσβ
W (l + p) , (3.10)

T
(hW :d)
λρµν = i

∫

d4l

(2π)4
dλραβµ(l,−l − k, p)Dτα

W (l)Nστν(l + k,−l,−k)Dβσ
W (l + k) , (3.11)

T
(hW :e)
λρµν = −Dγδ(p)cλρδν(p, k)×
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×
∫

d4l

(2π)4
Nαβµ(l,−l − p, p)Dτα

W (l)Nστγ(l + p,−l,−p)Dβσ
W (l + p) , (3.12)

T
(hW :f)
λρµν = −cZ

λρµα(p, k)Dαβ
Z (k)×

×
∫

d4l

(2π)4
Nγδβ(l,−l − k, k)Dτγ

W (l)Nστν(l + k,−l,−k)Dδσ
W (l + k) , (3.13)

T
(hW :g)
λρµν = −iRαβµν

∫

d4l

(2π)4
Dτα

W (l)cW
λρστ (l + q, l)Dβσ

W (l + q) , (3.14)

T
(hW :h)
λρµν = −Rλραβµν

∫

d4l

(2π)4
Dαβ

W (l) , (3.15)

T
(hW :i)
λρµν = −icλραν(p, k)Dαβ(p)Rστµβ

∫

d4l

(2π)4
Dστ

W (l) , (3.16)

T
(hW :j)
λρµν = −icZ

λρµα(p, k)Dαβ
Z (k)Rστβν

∫

d4l

(2π)4
Dστ

W (l) , (3.17)

and

T (φW :a)
µν = −2ωM2

W ηστ

∫

d4l

(2π)4
Nαβµ(l,−l − p, p)Dατ

W (l)Dδσ
W (l + q)×

× Nγδν(l + p,−l − q,−k)Dβγ
W (l + p) , (3.18)

T (φW :b)
µν = −2ωM2

W ηγδ

∫

d4l

(2π)4
Nαβµ(l − k,−l − q, p)Dατ

W (l − k)×

× Nστν(l,−l + k,−k)Dδσ
W (l)Dβγ

W (l + q) , (3.19)

T (φW :f)
µν = −2ωM2

ZηµαDαβ
Z (k)×

×
∫

d4l

(2π)4
Nγδβ(l,−l − k, k)Dτγ

W (l)Nστν(l + k,−l,−k)Dδσ
W (l + k) , (3.20)

T (φW :g)
µν = −2iωM2

W ηστRαβµν

∫

d4l

(2π)4
Dτα

W (l)Dβσ
W (l + q) , (3.21)

T (φW :j)
µν = −2iωM2

ZηµαRστβνDαβ
Z (k)

∫

d4l

(2π)4
Dτσ

W (l) ; (3.22)

we have omitted a number of lines corresponding to diagrams involving φ̃~n production that

evaluate to zero.

4. Counterterm diagrams

Because we are working at one loop using bare parameters, we must consider corrections

that arise from a Standard Model Z-γ mixing counterterm. It will turn out that such terms

give a zero contribution (and this is why we work with bare parameters), and it is sufficient

just to consider the general form that such terms take in order to demonstrate this.

Figure 7 contains the diagrams for the Z → γ + h̃~n process that have a counterterm,

and figure 8 contains the diagrams for the Z → γ+φ̃~n process that have a counterterm. We

may divide the diagrams into two classes: those containing a two-point counterterm vertex

and those containing a three-point counterterm vertex. The two-point counterterm vertex
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(a) (b)

(c)

Figure 7: Diagrams for the process Z → γ + h̃~n involving counterterm vertices.

(a) (b)

(c)

Figure 8: Diagrams for the process Z → γ + φ̃~n involving counterterm vertices.

is the Z-γ mixing counterterm that occurs in the Standard Model if one uses the tree-level

diagonalization of the electroweak mixing matrix for one-loop calculations. The three-point

counterterm vertex arises by considering the gravitational perturbation expansion about

the Lagrangian term corresponding to the two-point counterterm vertex.

To derive the Feynman rules for the counterterm vertices in this regime, we need to
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consider the Lagrangian Z-γ counterterm that arises from one-loop renormalization in the

Standard Model [23]. The relevant terms in the bare Standard Model Lagrangian may be

written as

L0Z,γ = −1

2
Zµ(−ηµν∂2 + ∂µ∂ν)Zν − 1

2
Aµ(−ηµν∂2 + ∂µ∂ν)Aν +

1

2
M2

ZZµηµνZν , (4.1)

and applying the renormalization

Zµ → Z
1/2
ZZ Zµ + Z

1/2
ZAAµ , (4.2)

Aµ → Z
1/2
AZ Zµ + Z

1/2
AAAµ , (4.3)

M2
Z → M2

Z + δM2
Z , (4.4)

we obtain a mixing counterterm in the Lagrangian, which may be written

LZγ =
(

Z
1/2
ZZ Z

1/2
ZA + Z

1/2
AZ Z

1/2
AA

)

[∂νZ
µ∂µAν − ηµν∂αZµ∂αAν ] +

+
(

M2
Z + δM2

Z

)

Z
1/2
ZZ Z

1/2
ZAηµνZµAν . (4.5)

We may read off from this that the Feynman rule for the two-point Z-γ counterterm vertex

with momentum k passing through is [23]

(

ηµν − kµkν

k2

)

[

(

M2
Z + δM2

Z

)

(

Z
1/2
ZZ Z

1/2
ZA

)

− k2
(

Z
1/2
ZZ Z

1/2
ZA + Z

1/2
AZ Z

1/2
AA

)]

+

+
kµkν

k2

[

(

M2
Z + δM2

Z

)

(

Z
1/2
ZZ Z

1/2
ZA

)]

.

(4.6)

We write this contribution in the form

A(k)ηµν + Bkµkν , (4.7)

where

A(k) =
(

M2
Z + δM2

Z

)

Z
1/2
ZZ Z

1/2
ZA − k2

(

Z
1/2
ZZ Z

1/2
ZA + Z

1/2
AZ Z

1/2
AA

)

(4.8)

and

B = Z
1/2
ZZ Z

1/2
ZA + Z

1/2
AZ Z

1/2
AA . (4.9)

For the three-point vertices, we must consider the gravitational coupling expansion of the

metric. We may write the O(κ) term of the expanded Lagrangian as [7]

Lκ = −κ
∑

~n

∫

d4x
(

h̃λρ,~nTλρ + ωφ̃~nT λ
λ

)

, (4.10)

where

Tλρ =

(

−ηλρL + 2
δL

δgλρ

)∣

∣

∣

∣

g=η

, (4.11)
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k k
AβZα

A(k)ηαβ + Bkαkβ

p

k

Zµ

φ̃~n

Aν

2ωκ
(

M2
Z + δM2

Z

)

Z
1/2
ZZ Z

1/2
ZAηµν

p

k

Zµ

h̃~n
λρ

Aν

−κ
(

Z
1/2
ZZ Z

1/2
ZA + Z

1/2
AZ Z

1/2
AA

)

cλρµν(p, k) − κ
(

M2
Z + δM2

Z

)

Z
1/2
ZZ Z

1/2
ZACµνλρ

Figure 9: Extra Feynman rules for counterterm vertices. Abbreviations are defined in the main

text.

and we have replaced Minkowski metric terms ηµν in the Lagrangian with the perturbed

metric gµν . We find that the Z-γ mixing terms in the energy-momentum tensor are

T
(Zγ)
λρ =

(

Z
1/2
ZZ Z

1/2
ZA + Z

1/2
AZ Z

1/2
AA

)

[ηµνηλρ∂
αZµ∂αAν − ηλρ∂νZ

µ∂µAν − ηµληνρ∂
αZµ∂αAν−

− ηµρηνλ∂αZµ∂αAν − ηµν∂λZµ∂ρA
ν − ηµν∂ρZ

µ∂λAν+

+ηµλ∂νZ
µ∂ρA

ν + ηµρ∂νZµ∂λAν + ηρν∂λZµ∂µAν + ηλν∂ρZ
µ∂µAν ] +

+
(

M2
Z + δM2

Z

)

Z
1/2
ZZ Z

1/2
ZA [ηµληρν + ηµρηλν − ηµνηλρ] Z

µAν , (4.12)

with trace

T λ
λ = − 2

(

M2
Z + δM2

Z

)

Z
1/2
ZZ Z

1/2
ZAηµνZµAν . (4.13)

This yields a Feynman rule for the vertex Zµ(p)Aν(k)h̃λρ,~n(q) of

−κ
(

Z
1/2
ZZ Z

1/2
ZA + Z

1/2
AZ Z

1/2
AA

)

cλρµν(p, k) − κ
(

M2
Z + δM2

Z

)

Z
1/2
ZZ Z

1/2
ZACµνλρ , (4.14)

where Cµνλρ and cλρµν(p, k) are defined in equations (2.1) and (2.2) respectively, and a

Feynman rule for the vertex Zµ(p)Aν(k)φ̃~n(q) of

2ωκ
(

M2
Z + δM2

Z

)

Z
1/2
ZZ Z

1/2
ZAηµν . (4.15)

We note for future reference that the form of the Z-γ-h̃~n vertex is such that there is no

term in which there are four momenta all carrying Lorentz indices (this will be important

in showing that the counterterms give no contribution to the amplitude).

The additional Feynman rules are summarized in figure 9.
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With these Feynman rules, and writing F
(h×)
λρµν and F

(φ×)
µν to denote the contributions

from the counterterm diagrams to the off-shell amplitudes F
(h)
λρµν and F

(φ)
µν , respectively, we

may write the contributions from individual diagrams to the amplitudes as

F
(h×:a)
λρµν = κcZ

λρµα(p, k)Dαβ
Z (k) [A(k)ηβν + Bkβkν ] , (4.16)

F
(h×:b)
λρµν = iκ

[(

Z
1/2
ZZ Z

1/2
ZA + Z

1/2
AZ Z

1/2
AA

)

cλρµν(p, k) +
(

M2
Z + δM2

Z

)

Z
1/2
ZZ Z

1/2
ZACµνλρ

]

, (4.17)

F
(h×:c)
λρµν = κcλρβν(p, k)Dαβ(p) [A(p)ηµα + Bpµpα] , (4.18)

and

F (φ×:a)
µν = 2ωκηµαM2

ZDαβ
Z (k) [A(k)ηβν + Bkβkν ] , (4.19)

F (φ×:b)
µν = −2iωκ

(

M2
Z + δM2

Z

)

Z
1/2
ZZ Z

1/2
ZAηµν , (4.20)

F (φ×:c)
µν = 0 . (4.21)

5. General forms of the amplitudes

We now derive general forms that must be taken by the amplitudes we are calculating;

these forms allow simplification of the calculation. The argument for the decay involving a

spin-2 graviton excitation is that of Nieves and Pal [1]; the argument for the decay involving

a spin-0 graviton excitation is essentially the first part of the argument for the spin-2 case,

and is given first as it is more straightforward.

The arguments rely upon Ward-Takahashi identities that are consequences of electro-

magnetic and gravitational gauge invariance. This gauge invariance can be seen relatively

easily for each of the sets of fermion loop diagrams, W loop diagrams and counterterm

diagrams separately, using the arguments contained in Sections 3.3, 3.4, 4.3 and 4.4 of

reference [1], and by direct calculation in the case of the counterterm diagrams.

5.1 Decay into spin-0 excitation and photon

Electromagnetic gauge invariance implies conservation of the electromagnetic current,

which (transforming to momentum space) gives

kνF (φ)
µν (q, k) = 0 . (5.1)

We may expand F
(φ)
µν about k = 0, writing

F (φ)
µν = T 0

µν + kαT 1
µνα , (5.2)

with T 0
µν independent of k. Equation (5.1) then implies that

kνT 0
µν = 0 , (5.3)

kνkαT 1
µνα = 0 , (5.4)

and since this is true for all k with |k0| ≤ MZ in the centre of mass frame and k2 = 0, we

can deduce that

T 0
µν = 0 (5.5)
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and

T 1
µνα = −T 1

µαν . (5.6)

This means we may write the on-shell amplitude (1.19) as

M(φ)(q, k) = εµ
Z(p)f να∗tµνα , (5.7)

where

fνα ≡ kνεα − kαεν (5.8)

and

tµνα = −tµαν . (5.9)

Recalling equations (1.9) and (1.14) (εν(k)kν = 0 and k2 = 0), along with the momentum

conservation relation p = k + q, and considering terms that could be contained in tµνα, we

see that the only terms contributing to the amplitude are ones not involving a Levi-Civita

tensor, of the form

scalar × εµ
Z(p)(kνεα∗ − kαεν∗)(ηµνqα − ηµαqν) , (5.10)

and ones involving a Levi-Civita tensor, of the form

scalar × εµ
Z(p)ǫναγδ(kγεδ∗ − kδεγ∗)(ηµνqα − ηµαqν) . (5.11)

Relabelling indices so that the polarisation tensors may be written as common coefficients

of the overall amplitude, we may rewrite the above as

F (φ)
µν = (kµqν − k · qηµν)F (φ) + (ǫµναβqαkβ)F

(φ)
1 , (5.12)

where F (φ) and F
(φ)
1 are Lorentz scalars.

5.2 Decay into spin-2 excitation and photon

The argument in the case of decay involving a spin-2 graviton excitation may be viewed

as an extension of the case involving a spin-0 graviton excitation. It is given in full in

reference [1] for the case of a massless graviton, and is sketched here.

Similarly to the spin-0 case, we may write

Fλρµν = T 0
λρµν + kαT 1

λρµνα , (5.13)

and we may use the condition kνFλρµν to deduce that we may write the on-shell amplitude

(1.18) in the form

M(h)(q, k) = Eλρ(q)εµ
Z(p)f να∗tλρµνα , (5.14)

where fνα is as defined in equation (5.8).
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We may also use gravitational gauge invariance to derive a manner of writing the am-

plitude, in a similar fashion to the way we have used electromagnetic invariance (although

the details are complicated by the extra Lorentz index in the gravitational case).

Writing

M(h) = Eλρ(q)jλρ(q, k) , (5.15)

and expanding

jλρ = j0
λρ + qσj1

λρσ + qτqσj2
λρστ , (5.16)

where j0
λρ and j1

λρσ are independent of q, we may use the conditions

qλjλρ = 0, qρjλρ = 0 (5.17)

(following from conservation of the energy-momentum tensor) to deduce

j0
λρ = 0 , (5.18)

j1
λρσ = 0 . (5.19)

In addition, j2
λρστ has a number of symmetries arising from its definition (namely λ ↔ ρ

symmetry, σ ↔ τ symmetry and antisymmetry under interchange of either of (λ, ρ) with

either of (σ, τ)). We also note that no term in the expansion of j2
λρστ contains a qλ or qρ

term, because such terms vanish on contraction with the gravitational polarisation tensor

(equation (1.11)). Further, we need not consider terms in qσ or qτ , since q2 = m2
~n, and

so such terms reduce to lower order terms in equation (5.16). Combining these properties

with the expression for the form of the amplitude obtained from consideration of the

electromagnetic gauge invariance yields a general form of the amplitude that may be written

as

F
(h)
λρµν =

{

(kλqν − k · qηνλ)(kρqµ − k · qηµρ)F
(h) + ǫλναβqαkβ(kρqµ − k · qηµρ)F

(h)
1 +

+(kλqν − k · qηνλ)ǫρµαβqαkβF
(h)
2

}

+ (λ ↔ ρ) . (5.20)

6. Calculation of the amplitude coefficients

Because the individual sets of diagrams (ones with fermion loops, ones with W boson

loops, and ones with counterterms) separately satisfy the requisite conditions to give a

contribution to the amplitudes matching the given general forms, we can now calculate

these contributions separately. We begin by showing that the contribution to the ampli-

tude from the counterterm diagrams is zero in both the decay involving a spin-2 graviton

excitation and the decay involving a spin-0 graviton excitation. This will mean that the

contributions from the other sets of diagrams must be finite, and so we should not be

surprised when we see a “miraculous” cancellation of divergences in the case of decay to

a spin-0 graviton excitation. Indeed, we note that as we have not made any particular

assumptions about the number of fermions, we know that there cannot be a cancellation of

infinities between the fermion loop diagrams and the W boson loop diagrams. This means

that the contribution from each of the individual sets of diagrams must be finite.
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6.1 Counterterm diagrams contribution

6.1.1 Spin-2 case

We note that there are no Levi-Civita tensors in any of the counterterm-containing dia-

grams that contribute to the decay amplitude in the spin-2 graviton excitation case (equa-

tions (4.16) to (4.18)). The diagrams therefore give no contribution to either F
(h)
1 or F

(h)
2 ,

and we need only consider the contribution to F (h).

To consider the contribution to F (h) we need consider only one of the terms of which

it is a coefficient, and (as in [1]) we choose the term F (h)kλkρqµqν (noting that this term

appears twice in the expression given in equation (5.20)). Equation (1.10) implies that

εµ
Z(p)kµ = −εµ

Z(p)qµ , (6.1)

so that terms requiring consideration also arise from terms of the form kλkρkµqν .

For diagram (a), we note that the contribution has an overall coefficient of kν , and

therefore does not contribute to the amplitude. For diagram (b), we note that there is no

term containing four momenta with Lorentz indices, so there is no contribution from this

term either. Similarly for diagram (c), once we note that the term with a B coefficient

contains a factor of pµ so provides no contribution to the amplitude, we can see that there

is no remaining term with four Lorentz index-carrying momenta. The contribution to F (h)

from the counterterm diagrams is therefore zero.

6.1.2 Spin-0 case

We note that, as in the spin-2 case, there are no Levi-Civita tensors in any of the

counterterm-containing diagrams that contribute to the decay amplitude in the spin-0

graviton excitation case (equations (4.19) to (4.21)). The diagrams therefore give no con-

tribution to F
(φ)
1 , and we need only consider the contribution to F (φ).

Similarly to the spin-2 case, we need consider only one of the terms of which F (φ) is

a coefficient, and we choose the term kµqν . In this case, the term is not repeated in the

expression for the general form of the amplitude. Again, equation (1.10) implies that terms

requiring consideration also arise from terms of the form qµqν .

It is sufficient for the counterterm diagrams to note that no diagram expression depends

upon the momentum q of the spin-0 particle, so that there is no contribution from the

counterterms to the amplitude.

6.2 Loop diagram contributions to the spin-2 amplitude coefficients

We shall see that there are no Levi-Civita terms to be considered, so that the contributions

to F
(h)
1 and F

(h)
2 are zero. In considering contributions to F (h), we shall again look at terms

of the form kλkρqµqν (or kλkρkµqν).

6.2.1 Fermion loop diagrams

The determination of the contribution from diagrams containing fermion loops is very

similar to the massless case considered in [1].
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With respect to the contributions to F
(h)
1 and F

(h)
2 , we note that for diagrams (c), (d),

(e) and (f), any term with a Levi-Civita tensor also has a metric tensor symmetric in two

of the indices of the Levi-Civita tensor, so that there is no contribution from any of these

diagrams.

With respect to the contributions to F (h), we note that none of diagrams (c), (d), (e)

and (f) contributes a term of the relevant form: this is straightforward to see for diagrams

(c) and (d), which only depend upon p and k respectively; it is relatively easy to see

for diagrams (e) and (f) if one uses the definitions of cλρβν(p, k) and cZ
λρµα(p, k) given in

equations (2.2) and (2.3), respectively.

It is therefore necessary only to consider contributions from diagrams (a) and (b). The

contributions from diagrams (a) and (b) may be written in the form

T
(hf :a)
λρµν = i

∫

d4l

(2π)4
lρTr

[

γ̃µ(/l − /k + mf )γν(/l + mf )γλ(/l + /q + mf )
]

[

(l − k)2 − m2
f

] [

(l + q)2 − m2
f

] (

l2 − m2
f

) , (6.2)

T
(hf :b)
λρµν = i

∫

d4l

(2π)4
lρTr

[

γ̃µ(/l − /q + mf )γλ(/l + mf )γν(/l + /k + mf )
]

[

(l + k)2 − m2
f

] [

(l − q)2 − m2
f

] (

l2 − m2
f

) . (6.3)

As in reference [1] we can use the cyclic property of the trace and charge conjugation

relations

C−1γµC = −γµ T , C−1γµγ5C =
(

γµγ5
)T

, (6.4)

to write the sum of these terms as

T
(hf :a)
λρµν + T

(hf :b)
λρµν = 2iXf

∫

d4l

(2π)4
fλρµν(l)

[

(l − k)2 − m2
f

] [

(l + q)2 − m2
f

] (

l2 − m2
f

) , (6.5)

where

fλρµν(l) = lρTr
[

γµ(/l − /k + mf )γν(/l + mf )γλ(/l + /q + mf )
]

. (6.6)

As the trace does not contain a γ5 term, the contribution to the amplitude will not contain

a Levi-Civita tensor, and so the contributions to F
(h)
1 and F

(h)
2 are zero. A Feynman

parameterization yields

T
(hf :a)
λρµν + T

(hf :b)
λρµν = 4iXf

∫

d4l

(2π)4

∫ 1

0
dx

∫ 1−x

0
dy

fλρµν(l + xk − yq)
[

l2 − m2
f + y(1 − x − y)m2

~n + xyM2
Z

]3 ,

(6.7)

and considering only the terms we have previously noted, there are no divergences to be

considered and we can integrate with respect to the loop momentum, obtaining a contri-

bution to F (h) from each fermion in the theory of

F (hf) = − κeg

2π2 cos θW
QfXfJ(mf ,m~n,MZ) , (6.8)

where

J(X,Y,Z) =

∫ 1

0
dx

∫ 1−x

0
dy

x2y(1 − x − y)

X2 − y(1 − x − y)Y 2 − xyZ2
. (6.9)
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6.2.2 W loop diagrams

The determination of contributions from diagrams containing W boson loops is also very

similar to the massless case considered in [1].

There are no Levi-Civita terms in the individual diagram contributions, so the overall

contributions to F
(h)
1 and F

(h)
2 are zero. We need therefore only consider the kλkρqµqν-like

terms to obtain a contribution to the coefficient F (h).

The contributions from diagrams (g) and (h) have no dependence on k, so cannot take

the form we are considering, and therefore may be ignored. Similarly to the fermion case,

the forms of cλραν(p, k) and cZ
λρµα(p, k), given in equations (2.2) and (2.3), respectively,

are such that the combinations T
(hW :e)
λρµν +T

(hW :i)
λρµν and T

(hW :f)
λρµν +T

(hW :j)
λρµν contain no relevant

contributions to the coefficient F (h) (see [1] for more details). Expanding the expressions

for diagrams (c) and (d), we see that no terms in the expressions contain a qν term, so these

diagrams provide no relevant contribution. We are therefore left with only the contributions

from diagrams (a) and (b). The contributions from these diagrams are equal: this may

be seen by applying a change of variable in one of the integrands in the expressions for

T
(hW :a)
λρµν and T

(hW :b)
λρµν , or perhaps more straightforwardly by observing that the contributions

obtained from the diagrams are independent of the direction in which the W boson loop is

traversed.

It may be shown after some manipulation [1] that the contribution from diagram (b)

is contained in the equation

T
(hW :b)
λρµν = 8ikλkρqµqν

(

6 − M2
Z

M2
W

)

×

×
∫

d4l

(2π)4

∫ 1

0
dx

∫ 1−x

0
dy

x2y(1 − x − y)
[

l2 − M2
W + y(1 − x − y)m2

~n + xyM2
Z

]3 +

+ non-contributing terms , (6.10)

and therefore, after performing the integration over the loop momentum, that the overall

contribution from the W boson loop diagrams to the coefficient F (h) is

F (hW ) =
κeg cos θW

4π2

(

6 − M2
Z

M2
W

)

J(MW ,m~n,MZ) , (6.11)

where J(X,Y,Z) is defined in equation (6.9).

6.3 Overall contribution to the spin-2 amplitude coefficients

We have determined so far that the coefficients F
(h)
1 and F

(h)
2 are zero. We have determined

also that the coefficient F (h) is given by

F (h) =
κeg

4π2 cos θW
×

×



cos2 θW

(

6 − 1

cos2 θW

)

J(MW ,m~n,MZ) − 2
∑

f

QfXfJ(mf ,m~n,MZ)



 .

(6.12)
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To proceed, we approximate the analytically intractable integrals of the form

J(X,Y,Z). We note that all the integrals in which we are interested take the form

J(X,m~n,MZ), and since the mass of the Kaluza-Klein mode is constrained by m~n ≤ MZ ,

we may consider the integral only in the cases where 0 ≤ Y ≤ Z.

We consider the expression for J(X,Y,Z) given in equation (6.9), and repeated here

for convenience:

J(X,Y,Z) =

∫ 1

0
dx

∫ 1−x

0
dy

x2y(1 − x − y)

X2 − y(1 − x − y)Y 2 − xyZ2
. (6.13)

We note that over the range of integration, the maximum value of the expression xy is

1/4, and the maximum value of the expression y(1 − x − y) is also 1/4. This allows us

to consider two limiting cases for approximation of the integral: X/(Y + Z) ≫ 1/4 and

X/(Y + Z) ≪ 1/4. With the constraint 0 ≤ Y ≤ Z, it is sufficient to consider the cases

X/Z ≫ 1/2 and X/Z ≪ 1/4.

To evaluate the case X/Z ≫ 1/2, we may approximate the integral by J(X, 0, 0), which

is relatively straightforward to calculate, and yields the result

J(X, 0, 0) =
1

360X2
. (6.14)

To evaluate the case X/Z ≪ 1/2, we may approximate the integral by J(0, Y, Z). We

may change the order of integration so as to perform the x integral first; this is possible

analytically. We obtain an integral polynomial in (1−y) that we can evaluate analytically.

Evaluating this integral, we obtain

J(0, Y, Z) =
1

12(Z2 − Y 2)
− Z2

8(Z2 − Y 2)2
+

Y 2Z2

4(Z2 − Y 2)3
+

Y 4Z2

4(Z2 − Y 2)4
log

(

Y 2

Z2

)

. (6.15)

To proceed, we use the identity

B2

C2 − B2
≡ C2

C2 − B2
− 1 (6.16)

to eliminate all terms with a B2 numerator, as well as the identity

log

(

B2

C2

)

= log

(

1 − C2 − B2

C2

)

, (6.17)

and expand the logarithm term (the expansion is valid for 0 < Y ≤ Z, and the final answer

turns out to be valid for Y = 0 as well). We obtain

J(0, Y, Z) = −1

2

∞
∑

j=1

1

(j + 1)(j + 2)(j + 3)
Z−2j(Z2 − Y 2)j−1 . (6.18)

We now return to our expression for F (h) given in equation (6.12). We approximate

the integrals by using the form of equation (6.14) for J(MW ,m~n,MZ) and J(mt,m~n,MZ),
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and the form of equation (6.18) for the integrals relating to fermions other than the top

quark. This gives

F (h) =
κeg

4π2 cos θW M2
Z

[

1

360

(

6 − 1

cos2 θW

)

+

+

(

5 − 40

3
sin2 θW

)





∞
∑

j=0

1

(j + 2)(j + 3)(j + 4)

(

1 − m2
~n

M2
Z

)j


−

− M2
Z

m2
t

(

1

180
− 2

135
sin2 θW

)]

(6.19)

(where we have used that MW = MZ cos θW ). Using e = g sin θW and sin2 θW = 0.23,

along with a numerical value for MZ/mt [25], we obtain the approximation

F (h) =
κe2

4π2M2
Z



0.030 + 4.6





∞
∑

j=0

1

(j + 2)(j + 3)(j + 4)

(

1 − m2
~n

M2
Z

)j






 . (6.20)

This approximation agrees with that given in reference [1] in the case m~n = 0.

6.4 Loop diagram contributions to the spin-0 amplitude coefficients

As in the spin-2 case, we shall see that there are no Levi-Civita terms to be considered,

so that the contributions to F
(φ)
1 are zero. In considering contributions to F (φ), we shall

again look at terms of the form kµqν .

6.4.1 Fermion loop diagrams

The contributions from diagrams (d) and (f) are zero, since the contributions only depend

upon k, so they are not of a form to contribute to F (φ) and symmetry considerations show

that they do not contribute to F
(φ)
1 . A similar argument shows that diagram (c), which

depends only upon p, does not contribute to either of the coefficients.

As diagram (e) trivially gives a zero contribution, it follows that it is necessary only

to consider contributions from diagrams (a) and (b).

The methodology employed is very similar to that of the spin-2 case, developed in [1].

We begin by writing out expressions for the fermion propagators, so that we may write the

contributions as

T (φf :a)
µν = −2iω

∫

d4l

(2π)4
Tr

[

γ̃µ

(

/l − /k + mf

)

γν

(

/l + mf

) (

3
2
/l + 3

4/q − 2mf

) (

/l + /q + mf

)]

[

(l + q)2 − m2
f

] [

(l − k)2 − m2
f

] [

l2 − m2
f

] ,

(6.21)

T (φf :b)
µν = −2iω

∫

d4l

(2π)4
Tr

[

γ̃µ

(

/l − /q + mf

) (

3
2
/l − 3

4/q − 2mf

) (

/l + mf

)

γν

(

/l + /k + mf

)]

[

(l + k)2 − m2
f

] [

(l − q)2 − m2
f

] [

l2 − m2
f

] .

(6.22)

For the second integral, we change the integration parameter to −l, and apply the cyclic

property of the trace, the trace-reversal invariance of strings of gamma matrices, the in-

variance of transposing matrices inside the trace, in addition to the charge conjugation
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properties of the matrices. We are able to obtain a term in Yf that cancels with the cor-

responding term in the first integral (so that there is no Levi-Civita term and therefore

no contribution to F
(φ)
1 ), and a term in Xf equal to the corresponding term in the first

integral. We are therefore able to write

T (φf :a)
µν + T (φf :b)

µν = −4iωXf

∫

d4l

(2π)4
fµν(l)

[

(l − k)2 − m2
f

] [

(l + q)2 − m2
f

] [

l2 − m2
f

] , (6.23)

where

fµν(l) = Tr

[

γµ

(

/l + /q + mf

)

(

3

2
/l +

3

4
/q − 2mf

)

(

/l + mf

)

γν

(

/l − /k + mf

)

]

. (6.24)

Applying a Feynman parameterization and continuing to D dimensions, the equation be-

comes

T (φf :a)
µν + T (φf :b)

µν = −8iωXfµ(4−D)× (6.25)

×
∫

dDl

(2π)D

∫ 1

0
dx

∫ 1−x

0
dy

fµν(l + xk − yq)
[

l2 − m2
f + y(1 − x − y)m2

~n + xyM2
Z

]3 .

We are interested in terms that will contribute to the coefficient of kµqν . We may use the

symmetry properties of the l integral to discard terms that are odd in l, and to replace

lαlβ → 1

D
ηαβ l2 , (6.26)

lαlβlγ lδ → 1

D(D + 2)
(ηαβηγδ + ηαγηβδ + ηαδηβγ)

(

l2
)2

(6.27)

(see for example page 477 of reference [26]). We find [24] that the term in the numerator

of the integral containing kµqν may be written as

kµqν

[

3M2
Zxy

(

2 − 3x − 6y + 4xy + 4y2
)

+ 3m2
~ny (1 − x − y)

(

1 − 3x − 4y + 4xy + 4y2
)

+

+ m2
f

(

5 − 3x − 20y + 20xy + 20y2
)

+

+3l2
(

(

−1 + x + 4y − 4xy − 4y2
)

+
2

D

(

−1 + 3x + 8y − 8xy − 8y2
)

)]

. (6.28)

We note that the integral appears to have a divergent term. However, it will turn out that

the coefficient of the divergent term is zero after integration over the Feynman parameters.

It is possible, although not entirely straightforward, to evaluate the integral with the

numerator given above. In order to do so, we adopt the following strategy:

• Perform the integrations over the loop momentum l. For the numerator terms not

containing factors of l, we use the standard result. For the numerator terms con-

taining factors of l, we use the results given in Appendix A. We obtain a result that

appears to diverge as D → 4.
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• Order the Feynman parameter integration so as to perform the x integral first.

• Perform the x and y integration for the coefficients of the terms that appear to be

D → 4 divergent. (These are also the coefficients of γ and log(4π) “MS-like” terms,

which we therefore consider at the same time.) The terms vanish.

• To simplify the algebra, rewrite the numerator of the 1/[m2
f −y(1−x−y)m2

~n−xyM2
Z ]

term to eliminate terms with numerator coefficients involving m2
f . (Note that doing

this before approximating the integral in the way done below makes no difference

when making the light fermion approximation given, and is in fact equivalent to

including an extra term in the series expansion for the fraction when making the

heavy fermion approximation given.)

• At this stage, there are terms in the integrand that do not contain masses (these

arise from the step above, and from the “anomalous” terms arising from the loop

integration that looks like equation (A.1)). Integrate these terms with respect to the

Feynman parameters.

• Integrate the logarithmic term with respect to x by parts, obtaining a contribution

to the 1/[m2
f −y(1−x−y)m2

~n −xyM2
Z ] term and a logarithmic term to be integrated

with respect to y only.

• Integrate the remaining logarithmic term with respect to y by parts. One of the re-

sultant terms is zero. Approximate the denominator of the other term by considering

the cases m2
f ≪ M2

Z/4 (in which case take m2
f = 0) and m2

f ≫ M2
Z/4 (in which case

take M2
Z = 0).

• In order to perform the remaining integral (the integrand has a denominator of

[m2
f − y(1 − x − y)m2

~n − xyM2
Z ]), approximate the denominator of the integrand by

considering the cases m2
f ≪ M2

Z/4 (in which case take m2
f = 0) and m2

f ≫ M2
Z/2 (in

which case take M2
Z = 0, m2

~n = 0). The latter approximation leads to a relatively

straightforward integral. For the former approximation, the integral may be evalu-

ated by considering the numerator and denominator as polynomials in x, and writing

the integrand in quotient+remainder form.

Following this strategy, we obtain that for each fermion, the contribution to the amplitude

coefficient F (φ) is

F (φf) =











0 for m2
f ≪ 1

4M2
Z ,

− ωXf

(4π)2

[

8
3 + 1

45

7m2

~n
+11M2

Z

m2

f

]

for m2
f ≫ 1

2M2
Z .

(6.29)

6.4.2 W loop diagrams

There are no Levi-Civita terms in the individual diagram contributions, so the overall

contribution to F
(φ)
1 is zero. We need therefore only consider the kµqν-like terms to obtain

a contribution to the coefficient F (φ).
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The contributions from diagrams (f) and (j) are zero, since the contributions only

depend upon k, and therefore do not yield a term of the form we are considering.

With the exception of diagrams (a), (b) and (g), the other diagrams trivially give a

zero contribution. We need to consider the contributions from each of diagrams (a), (b)

and (g).

We begin by considering the contributions from diagrams (a) and (b). These diagrams

yield an identical contribution. We may see this through consideration of the integral

that contributes to T
(φW :b)
µν , given in equation (3.19). If we take this integral, change the

integration parameter taking l → −l − q, relabel the dummy suffices and note that

Dαβ
W (l) = Dαβ

W (−l) (6.30)

and

Nαβγ(k1, k2, k3) = −Nβαγ(k2, k1, k3) , (6.31)

we are able to obtain the expression for T
(φW :a)
µν . We can therefore obtain the contribution

from both diagrams by considering the form of the contribution from one of the diagrams,

and we choose diagram (b). We write the contribution in the form

T (φW :a)
µν + T (φW :b)

µν =
4iω

M2
W

∫

d4l

(2π)4
Sµν(l)

[

(l − k)2 − M2
W

] [

(l + q)2 − M2
W

] [

l2 − M2
W

] , (6.32)

where

Sµν(l) = M4
W ηγδNαβµ(l − k,−l − q, p)Nστν(l,−l + k,−k)×

×
(

−ηατ +
(l − k)α(l − k)τ

M2
W

)(

−ηδσ +
lδlσ

M2
W

)(

−ηβγ +
(l + q)β(l + q)γ

M2
W

)

.

(6.33)

Applying a Feynman parameterization and continuing to D dimensions, the equation be-

comes

T (φW :a)
µν + T (φW :b)

µν =
8iω

M2
W

µ(4−D)×

×
∫

dDl

(2π)D

∫ 1

0
dx

∫ 1−x

0
dy

Sµν(l + xk − yq)
[

l2 − M2
W + y(1 − x − y)m2

~n + xyM2
Z

]3 .

(6.34)

We leave the equation in this form for now, and turn to the contribution from diagram

(g). Unlike the corresponding diagram for spin-2 particle decay, this diagram provides a

contribution to the amplitude coefficient. We write this contribution in the form

T (φW :g)
µν =

2iω

M2
W

Uµν(l)
[

l2 − M2
W

] [

(l + q)2 − M2
W

] , (6.35)

where

Uµν(l) = M4
W ηστRαβµν

(

−ητα +
lτ lα

M2
W

)(

−ηβσ +
(l + q)β(l + q)σ

M2
W

)

. (6.36)
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We wish to combine this contribution with that for diagrams (a) and (b), so we write it in

the form

T (φW :g)
µν =

2iω

M2
W

∫

d4l

(2π)4
Uµν(l)

[

(l − k)2 − M2
W

]

[

l2 − M2
W

] [

(l + q)2 − M2
W

] [

(l − k)2 − M2
W

] . (6.37)

Applying a Feynman parameterization and continuing to D dimensions, the equation be-

comes

T (φW :g)
µν =

4iω

M2
W

µ(4−D)×

×
∫

dDl

(2π)D

∫ 1

0
dx

∫ 1−x

0
dy

Uµν(l + xk − yq)
[

(l + (x − 1)k − yq)2 − M2
W

]

[

l2 − M2
W + y(1 − x − y)m2

~n + xyM2
Z

]3 .

(6.38)

We may now combine the contributions from diagrams (a), (b) and (g). Using the symmetry

properties of the l integral given in equations (6.26) and (6.27), and taking a factor of

4iω/M2
W outside the integral, we find [24] that the term in the numerator of the integrand

containing kµqν may be written as

kµqν

[

M4
Z

(

2xy2 − 2xy3 − 1

2
x2y − x2y2 +

1

2
x3y − x3y2

)

+

+ m2
~nM2

Z

(

2y2 − 4y3 + 2y4 − 3xy2 + 3xy3 + x2y −

−3

2
x2y2 + 2x2y3 − x3y + 2x3y2

)

+

+ m4
~n

(

−xy2 + 2xy3 − xy4 − 1

2
x2y +

5

2
x2y2 − 2x2y3 +

1

2
x3y − x3y2

)

+

+ M2
W M2

Z

(

−2 + 4y − 6y2 − 2x + 2xy +
1

2
x2 − 5x2y

)

+

+ M2
W m2

~n

(

−5xy + 5xy2 − 1

2
x2 + 5x2y

)

+

+ M4
W

(

12 + 8y − 8y2 − 4x − 8xy + D
(

−8y + 8y2 + 8xy
))

+

+ l2

{

M2
Z

((

−2 + 2y2 + 2x + xy − 1

2
x2 + 2x2y

)

+

+
2

D

(

2 − 4y + 4y2 + x + xy − x2 + 4x2y
)

)

+

+ m2
~n

((

2xy − 2xy2 +
1

2
x2 − 2x2y

)

+

+
2

D

(

−y + y2 − x + 5xy − 4xy2 + x2 − 4x2y
)

)

+

+ M2
W

(

(4 + 5x) +
2

D
(−12 + 5x)

)

}
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+
(

l2
)2

{

−x +
2

D
(1 − 2x)

}

]

. (6.39)

We evaluate this integral using a similar strategy to that for the fermion loop case. To

simplify the algebra, we rewrite the numerators of some fractional terms in order to ob-

tain fewer terms requiring the application of approximations. Subdominant terms will be

affected by the order in which rewriting a numerator and approximating the denominator

is performed. However, this effect will be negligible at the order of the approximations

made to the fractions themselves. Nevertheless, we record the order in which we proceed

through the algebra, so that it is possible to reproduce the result.

The strategy adopted is as follows:

• Perform the integrations over the loop momentum l. As in the fermion case, for the

numerator terms not containing factors of l, we use the standard result, and for the

numerator terms containing factors of l, we use the results given in Appendix A.

Again we obtain a result that, at first, appears to diverge as D → 4.

• Order the Feynman parameter integration so as to perform the x integral first.

• Perform the x and y integration for the coefficients of the terms that appear to be

D → 4 divergent (and of the terms that are “MS-like”). The terms vanish.

• Rewrite the numerator of the 1/
[

M2
W − y(1 − x − y)m2

~n − xyM2
Z

]

term to eliminate

terms with numerator coefficients involving M2
W (as in the fermionic case, when taken

with the approximation for the denominator below this is equivalent to adding higher

order corrections in the series expansion for the fraction).

• Integrate the terms that are non-fractional and do not contain a logarithm.

• Integrate the logarithmic term with respect to x by parts, obtaining a contribution to

the 1/
[

M2
W − y(1 − x − y)m2

~n − xyM2
Z

]

term and a logarithmic term to be integrated

with respect to y only. Rewrite the numerator of the fraction to eliminate terms with

coefficients involving M2
W .

• Integrate the remaining logarithmic term with respect to y by parts. The only term

that results is an integral with fractional integrand. This term can be integrated if we

approximate the denominator by M2
W . (Note that the result below does not involve

rewriting the numerator term with M2
W coefficient for this term only.)

• Perform the remaining double integral by approximating the denominator of the

fractional integrand by M2
W .

Following this strategy, we find that the contribution from the W boson loop diagrams to

the coefficient F (φ) is

F (φW ) = κeg cos θW
ω

(4π)2

[

14 +
11

15

m2
~n

M2
W

− 37

15

M2
Z

M2
W

+
19

210

m4
~n

M4
W

+
1

210

m2
~nM2

Z

M4
W

− 3

20

M4
Z

M4
W

]

.

(6.40)
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6.5 Overall contribution to the spin-0 amplitude coefficients

We have determined so far that the coefficient F
(φ)
1 is zero. We have also determined that

the coefficient F (φ) is given by

F (φ) = κeg cos θW
ω

(4π)2

[

14 +
11

15

m2
~n

M2
W

− 37

15

M2
Z

M2
W

+
19

210

m4
~n

M4
W

+
1

210

m2
~nM2

Z

M4
W

− 3

20

M4
Z

M4
W

]

−

− κeQtg

2 cos θW

ωXt

(4π)2

[

8

3
+

1

45

7m2
~n + 11M2

Z

m2
t

]

. (6.41)

Substituting a value for QtXt (and including the colour degrees of freedom), this becomes

F (φ) = κeg cos θW
ω

(4π)2

[

14 +
11

15

m2
~n

M2
W

− 37

15

M2
Z

M2
W

+
19

210

m4
~n

M4
W

+
1

210

m2
~nM2

Z

M4
W

− 3

20

M4
Z

M4
W

]

−

− κeg

2 cos θW

ω

(4π)2

(

1 − 8

3
sin2 θW

)[

8

3
+

1

45

7m2
~n + 11M2

Z

m2
t

]

, (6.42)

and using MW = MZ cos θW , e = g sin θW and sin2 θW = 0.23, along with a numerical

value for MZ/mt [25], we obtain the approximation

F (φ) =
κe2ω

(4π)2

[

18 + 1.7
m2

~n

M2
Z

+ 0.28
m4

~n

M4
Z

]

. (6.43)

7. Calculation of the decay width

7.1 Decays involving spin-2 Kaluza-Klein particles

For the decay to a spin-2 KK excitation, the matrix element is given by

M(h) = Eλρ∗(q)εν∗(k)εµ
Z(p)F (h) [(kλqν − k · qηνλ) (kρqµ − k · qηµρ) + (λ ↔ ρ)] . (7.1)

To obtain the square of the matrix element, we need the polarisation sum formulae

∑

pol

Eλρ∗(q)Eλ′ρ′(q) =
1

2

[(

ηλλ′ − qλqλ′

m2
~n

)(

ηρρ′ − qρqρ′

m2
~n

)

+

+

(

ηλρ′ − qλqρ′

m2
~n

)(

ηλ′ρ − qλ′

qρ

m2
~n

)

−

−2

3

(

ηλρ − qλqρ

m2
~n

)

(

ηλ′ρ′ − qλ′

qρ′

m2
~n

)]

, (7.2)

∑

pol

εν∗(k)εν′

(k) = −ηνν′

, (7.3)

∑

pol

εµ
Z(p)εµ′∗

Z (p) = −ηµµ′

+
pµpµ′

M2
Z

(7.4)

(we note that the formula for the gravitational polarisation sum [7, 22] differs from the

massless case presented in [1]). This gives [24]

∣

∣

∣
M(h)

∣

∣

∣

2
=

∣

∣

∣
F (h)

∣

∣

∣

2
(

(

M2
Z − m2

~n

)4 (

7M2
Z + 3m2

~n

)

36M2
Z

)

. (7.5)
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We note that as m~n → 0, we recover the expression obtained for the case of decay to a

massless graviton [1], save that using the massive gravitational polarisation spin sum causes

a difference by a factor of 7/2 from using the massless gravitational polarisation spin sum.

The decay width Γ(h,~n) to a single spin-2 KK mode is given by

Γ(h,~n) =
p∗

32π2M2
Z

∫

∣

∣

∣
M(h)

∣

∣

∣

2
dΩ , (7.6)

where

p∗ =
1

2MZ

(

M2
Z − m2

~n

)

. (7.7)

This gives

Γ(h,~n) =
1

576πM5
Z

(

M2
Z − m2

~n

)5 (

7M2
Z + 3m2

~n

)

∣

∣

∣
F (h)

∣

∣

∣

2
. (7.8)

Substituting the expression for F (h) obtained in equation (6.20), and recalling that α =

e2/4π and κ =
√

8πG, we obtain

Γ(h,~n) =
α2GMZ

72π2

(

1 − m2
~n

M2
Z

)5
(

7M2
Z + 3m2

~n

)

×

×



0.00088 + 0.27





∞
∑

j=0

1

(j + 2)(j + 3)(j + 4)

(

1 − m2
~n

M2
Z

)j


+

+21





∞
∑

i=0

∞
∑

j=0

1

(i + 2)(i + 3)(i + 4)(j + 2)(j + 3)(j + 4)

(

1 − m2
~n

M2
Z

)i+j






 .

(7.9)

To obtain the total decay width involving spin-2 graviton excitations, we must sum over

the excitation levels. Following [7], we make a continuum approximation for the density of

states at a given mass level. Given a common compactification radius R/2π, the density

of states over which we should integrate is

ρ(m~n) =
Rnmn−2

~n

(4π)n/2Γ(n/2)
, (7.10)

that is, the derivative with respect to m2
~n of the volume of a n-dimensional hypersphere of

radius r =
√

~n2. That is, the total decay width is approximated by

Γ
(h)
tot =

∫ M2

Z

0
dm2

~nΓ(h,~n)ρ(m~n) . (7.11)

We change the integration variable to m2
~n/M2

Z and expand the resultant beta functions in

terms of gamma functions, obtaining

Γ
(h)
tot =

α2GM3+n
Z Rn

72π2(4π)n/2
×
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×



0.00088

(

7 · 5!
Γ(n

2 + 6)
+

3 · n
2 · 5!

Γ(n
2 + 7)

)

+

+ 0.27







∞
∑

j=0

1

(j + 2)(j + 3)(j + 4)

(

7 · (j + 5)!

Γ(n
2 + j + 6)

+
3 · n

2 · (j + 5)!

Γ(n
2 + j + 7)

)







+

+ 21







∞
∑

i=0

∞
∑

j=0

1

(i + 2)(i + 3)(i + 4)(j + 2)(j + 3)(j + 4)
×

×
(

7 · (i + j + 5)!

Γ(n
2 + i + j + 6)

+
3 · n

2 · (i + j + 5)!

Γ(n
2 + i + j + 7)

)









 . (7.12)

We note that the width tends to zero as n → ∞, showing that as the number of dimensions

increases for large n, the phase space increase dominates the increase in the number of KK

states to reduce the decay width.

7.2 Decays involving spin-0 Kaluza-Klein particles

For the decay to a spin-0 KK excitation, the matrix element is given by

M(φ) = εν∗(k)εµ
Z(p)F (φ) (kµqν − k · qηµν) . (7.13)

Using equations (7.3) and (7.4), we obtain [24]

∣

∣

∣M(φ)
∣

∣

∣

2
=

1

6

(

M2
Z − m2

~n

)2
∣

∣

∣F (φ)
∣

∣

∣

2
. (7.14)

The decay width Γ(φ,~n) to a single spin-0 KK mode is given by

Γ(φ,~n) =
p∗

32π2M2
Z

∫

∣

∣

∣M(φ)
∣

∣

∣

2
dΩ , (7.15)

where, as before,

p∗ =
1

2MZ

(

M2
Z − m2

~n

)

. (7.16)

This gives

Γ(φ,~n) =
1

96πM3
Z

(

M2
Z − m2

~n

)3
∣

∣

∣F (φ)
∣

∣

∣

2
. (7.17)

Substituting the expression for F (φ) obtained in equation (6.43), again using that α = e2/4π

and κ =
√

8πG, and recalling that ω2 = 2/(3(n + 2)), we obtain

Γ(φ,~n) =
α2G

288π2(n + 2)M3
Z

(

M2
Z − m2

~n

)3 ×

×
[

330 + 63
m2

~n

M2
Z

+ 13
m4

~n

M4
Z

+ 0.97
m6

~n

M6
Z

+ 0.078
m8

~n

M8
Z

]

. (7.18)
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To obtain the total decay width involving spin-0 graviton excitations, we again ap-

proximate by an integral the sum over the excitation levels. Recalling that we have (n−1)

spin-0 particles at each mass level, the total decay width is approximated by

Γ
(φ)
tot =

∫ M2

Z

0
dm2

~nΓ(φ,~n)(n − 1)ρ(m~n) . (7.19)

As in the spin-2 case, we change the integration variable to m2
~n/M2

Z and expand the resul-

tant beta functions in terms of gamma functions, obtaining

Γ
(φ)
tot =

α2GM3+n
Z Rn

48π2(4π)n/2

(n − 1)

(n + 2)
×

×
[

330

Γ(n
2 + 4)

− 63 · n
2

Γ(n
2 + 5)

+
13 · n

2 · (n
2 + 1)

Γ(n
2 + 6)

− 0.97 · n
2 · (n

2 + 1) · (n
2 + 2)

Γ(n
2 + 7)

−

−0.078 · n
2 · (n

2 + 1) · (n
2 + 2) · (n

2 + 3)

Γ(n
2 + 8)

]

. (7.20)

As in the spin-2 case, the decay width tends to zero as n → ∞. We note that the width

is zero for n = 1, which we should expect as there are no spin-0 excited states in the case

of one extra dimension. We note also that whilst the width should be zero for n = 0, the

expression above does not give zero for n = 0. However, the extra-dimensional spin sum

identities of equation (1.5) are only valid for n > 0.

7.3 Overall decay width to photon and Kaluza-Klein graviton excitation

We may now use equations (7.12) and (7.20) to write down an approximation for the full

decay width at one loop of the Z boson to a photon and a Kaluza-Klein excitation in the

ADD scenario:

Γtot =
α2GM3+n

Z Rn

72π2(4π)n/2
×

×



0.00088

(

7 · 5!
Γ(n

2 + 6)
+

3 · n
2 · 5!

Γ(n
2 + 7)

)

+

+ 0.27







∞
∑

j=0

1

(j + 2)(j + 3)(j + 4)

(

7 · (j + 5)!

Γ(n
2 + j + 6)

+
3 · n

2 · (j + 5)!

Γ(n
2 + j + 7)

)







+

+ 21







∞
∑

i=0

∞
∑

j=0

1

(i + 2)(i + 3)(i + 4)(j + 2)(j + 3)(j + 4)
×

×
(

7 · (i + j + 5)!

Γ(n
2 + i + j + 6)

+
3 · n

2 · (i + j + 5)!

Γ(n
2 + i + j + 7)

)







+

+
3

2

(n − 1)

(n + 2)

{

330

Γ(n
2 + 4)

− 63 · n
2

Γ(n
2 + 5)

+
13 · n

2 · (n
2 + 1)

Γ(n
2 + 6)

−
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− 0.97 · n
2 · (n

2 + 1) · (n
2 +2)

Γ(n
2 +7)

− 0.078 · n
2 · (n

2 + 1) · (n
2 +2) · (n

2 +3)

Γ(n
2 + 8)

}]

.

(7.21)

Two comments about this expression are inherited from the constituent expressions of

equations (7.12) and (7.20). Firstly, the overall expression does not reduce to the case of

a single, massless graviton for n = 0, because the extra-dimensional spin sum formula in

equation (1.5) is only valid for n ≥ 1. Secondly, the overall width tends to zero as n → ∞,

so that this process becomes less distinguishable from a Standard Model background as

the number of extra dimensions increases.

Tables 1 and 2 give numerical values2 for the contributions inside the square brackets in

equation (7.21). It is notable that the contributions from the decays to spin-0 excitations

h̃ numerical approximation

n h̃ an. approx. full mf → 0 W,t approx.

2 0.16 0.16 0.16 0.16

3 0.056 0.058 0.057 0.056

4 0.019 0.020 0.020 0.019

5 0.0066 0.0070 0.0069 0.0066

6 0.0020 0.0023 0.0023 0.0022

Table 1: Numerical values of the h̃ contributions inside the square brackets of equation (7.21) for

some different values of n (‘an. approx.’ column), and the equivalent values when the contributions

are calculated by numerical integration. The ‘full’ column shows the results of integrating numer-

ically the full expression for the decay width (without making the approximations made in the

analytic case), and is the value with which the analytic expression is compared. The extra columns

show the effect of performing numerical integration under the extra approximations of neglecting

the masses of the fermions other than the top (‘mf → 0’ column) and of assuming in addition to

this that the W and top masses dominate the denominators of their respective integrands (‘W,t

approx.’ column). The purpose of including such columns is to give an indication of how much

these approximations change the final answer.

are dominant.

In order to estimate the effects of the analytic approximations used for the integral

J(X,Y,Z) in equation (6.9), and for the integrals performed to obtain equations (6.29)

and (6.40), we have evaluated contributions to the decay widths by integrating numerically

over the Feynman parameters and the KK mass-squared m2
~n, using Mathematica. We find a

deviation of approximately 5% between the analytically approximated and the numerically

approximated answers for the decays to spin-2 excitations, and a deviation of less than 1%

2Aside from the analytically approximated expressions for the φ̃ widths, which are calculated by hand,

these are evaluated using Mathematica [27]. The infinite sums are evaluated by truncation once the quoted

level of significance has been achieved. The numerical approximations to the integrals are evaluated using

the NIntegrate function with default options, and (for comparison) using a number of other numerical

integration routines [28] with their default options.
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φ̃ numerical approximation

n φ̃ an. approx. full mf → 0 W,t approx. Num. change

2 5.3 5.3 5.3 4.4 5.4

3 3.9 4.0 3.9 3.3 4.0

4 2.2 2.2 2.2 1.8 2.2

5 1.0 1.0 1.0 0.85 1.1

6 0.46 0.46 0.46 0.37 0.47

Table 2: Numerical values of the φ̃ contributions inside the square brackets of equation (7.21) for

some different values of n (‘an. approx.’ column), and the equivalent values when the contributions

are calculated by numerical integration. Again the ‘full’ column gives the values with which those

calculated analytically are compared. The extra columns show the effects of neglecting the masses of

the fermions other than the top (‘mf → 0’ column), of assuming in addition to this that the W and

top masses dominate the denominators of their respective integrands (‘W,t approx.’ column), and

of making this assumption but changing the numerators to eliminate M2
W as done in the analytic

calculation (‘Num. change’ column; as noted in the text this is equivalent to considering higher

order corrections in the series expansions for the fractions in the integrand).

for the decays to spin-0 excitations.3 We have also calculated numerical approximations

subject to the assumptions of zero mass for fermions other than the top, and (additionally

to the previous assumption) of the W and top masses dominating denominators in their

respective integrands. This indicates that the zero fermion mass assumptions are a very

good approximation, but that assuming that the W and top masses are much greater

than half the Z mass yields a poorer, although still acceptable, approximation. It is also

notable that the numerical approximations of the integrals for the decay into φ̃ suggest

that the accuracy of the analytic calculation of the width is much improved by rewriting

the numerators of the approximated fractions as we have.

8. Conclusions

We have evaluated amplitudes for Z-photon-Kaluza Klein graviton/gravi-scalar interaction,

relevant to extra dimensional models in which the Standard Model fields are confined to a

4-brane.

In addition, we have evaluated in the ADD scenario a reasonable approximation to

lowest order for the decay width of a Z boson to a photon and any Kaluza-Klein excitation

of the graviton. This width gives an extra contribution to the channel of Z boson decay

to photon plus missing energy compared with the Standard Model. The channel can

provide stronger bounds on the compactification radius R/2π for small numbers n of extra

dimensions.

The consideration of the decay channel involving spin-0 KK excitations (gravi-scalars)

has proved significant: for the decays considered, these channels provide the larger contri-

3The quoted deviations compare the values obtained from analytic approximation with the values ob-

tained from evaluating the full integral numerically using Mathematica’s NIntegrate routine.

– 36 –



J
H
E
P
1
1
(
2
0
0
7
)
0
8
9

bution to the overall width. The consideration of processes involving the gravi-scalar has

not been common in the literature.

We expect our signal to be most significant when the centre of mass energy is equal

to MZ , as, for example, was the case at LEP. We therefore intend to calculate bounds

upon the compactification radius from LEP data [12], given that the data appear to be

in accordance with Standard Model predictions. Our process would be additional to the

tree-level radiation of a spin-2 KK graviton tower from a photon.

The amplitudes obtained for Z → h̃γ and Z → φ̃γ could also be used in the calculation

of decays of a RS1 KK mode into a Z boson and a photon. In RS1, the KK mode coupling

is enhanced by a warp factor, making resonant production at colliders and interesting

signature, worthy of study. Although h̃ → γZ and φ̃ → γZ are loop-induced processes and

are therefore suppressed with respect to other, tree-level decays of a RS1 KK mode, the

channel would be useful for checking the couplings κ of the excitations, à la reference [29].
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A. Dimensional regularization integral identities

We write D = 4 − ǫ, and in each case take the limit as ǫ → 0. γ is the Euler-Mascheroni

constant. The integrals on the left are in Minkowski space. The methodology used may be

found, for example, in Appendix A.4 of reference [30].

µ(4−D)

∫

dDl

(2π)D
l2

(l2 − X2)3
=

i

(4π)2

[

2

ǫ
− γ + log(4π) − log

(

X2

µ2

)

− 1

2

]

(A.1)

µ(4−D)

∫

dDl

(2π)D
l2/D

(l2 − X2)3
=

1

4

i

(4π)2

[

2

ǫ
− γ + log(4π) − log

(

X2

µ2

)]

(A.2)

µ(4−D)

∫

dDl

(2π)D

(

l2
)2

(l2 − X2)3
= 3X2 i

(4π)2

[

2

ǫ
− γ + log(4π) − log

(

X2

µ2

)

+
1

6

]

(A.3)

µ(4−D)

∫

dDl

(2π)D

(

l2
)2

/D

(l2 − X2)3
=

3X2

4

i

(4π)2

[

2

ǫ
− γ + log(4π) − log

(

X2

µ2

)

+
2

3

]

(A.4)

µ(4−D)

∫

dDl

(2π)D

(

l2
)2

/(D(D + 2))

(l2 − X2)3
=

X2

8

i

(4π)2

[

2

ǫ
− γ + log(4π) − log

(

X2

µ2

)

+ 1

]

(A.5)
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